2nd Midterm

Foundations of Mathematics Final

$2020 \ \mathrm{Dec}\ 8$

F.1 Determine the cardinality of each of the following sets: (a) $A = \{1, 2, 3, \{1, 2, 3\}, 4, \{4\}\}$ (b) $B = \{x \in \mathbb{R} : |x| = -1\}$ (c) $C = \{m \in \mathbb{N} : 2 < m \le 5\}$ (d) $D = \{n \in \mathbb{N} : n < 0\}$ (e) $E = \{k \in \mathbb{N} : 1 \le k^2 \le 100\}$ (f) $F = \{k \in \mathbb{Z} : 1 \le k^2 \le 100\}.$

F.2 Let {S, T} be a partition of the set \mathbb{N} of positive integers and let U be a nonempty subset of \mathbb{N} . State the negation of each of the following statements:

(a) Every element of U can be expressed as x + y, where $x \in S$ and $y \in T$

(b) For every $x \in S$ and $y \in T$, $xy \in S$

(c) For every element $x \in S$, there is an element $y \in T$ such that y > x

F.3 Let A, B and C be nonempty sets and let f, g and h be functions such that $f : A \to B, g : B \to C$ and $h : B \to C$. For each of the following, prove or disprove: (a) If $g \circ f = h \circ f$, then g = h

(b) If f is one-to-one and $g \circ f = h \circ f$, then g = h

F.4 Prove for every positive integer n that $n^2 + 1$ is not a multiple of 6.