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Back to word vectors

Refresher from Lecture 5: static embeddings are obtained by
low-rank approximation of positive pointwise mutual information
(PPMI) matrix

But this was understood only after several years (by Levy and
Goldberg 2014a)

A good explanation of the philosophy behind the earlier
optimization is Pennington et al 2014

Let Xij count the number of times j occurs in the context of i
Xij∑
k Xik

= P(j |i). We really care about the ratios:
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GloVe
So we want some model function F (wi ,wj , w̃k) = Pik/Pjk

Inside F , we may as well go linear: F ((wi − wj)
T w̃k) = Pik/Pjk

Great trick: make sure F (wi ,wj , w̃k) = F (wT
i w̃k)/F (wT

j w̃k)

This forces F=exp. Would yield
wT
i w̃k = logPik = logXik − log

∑
k Xik but we absorb the

marginal in the bias, to obtain

wT
i w̃k + bi − b̃k = logXik

To deal with issues of too extreme values, a dampening function
(x/xm)3/4 for x ≤ xm, f = 1 for x ≥ xm is used to minimize the
weighted quadratic sum

∑V
i ,j f (Xij)(wT

i w̃k + bi − b̃k − logXik)2
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GloVe and skip-gram
Let Qij be the softmax estimate of P(i |j) given by

expwT
i w̃j/

∑V
k=1 expwT

i w̃k

The objective is J =
∑V

i=1 XiH(Pi ,Qi) where H(Pi ,Qi) is the
cross-entropy of the distributions Pi and Qi

We may as well look at a least squares model minimizing
Ĵ =

∑
i ,j Xi(Xij − expwT

i w̃j)

Key takeway from Pennington et al 2014: “In fact, it is
possible to optimize (for J) directly as opposed to the on-line
training methods used in the (neural) models”

Lesson: neural nets (which perform incremental optimization)
are good heuristics, but not as good models as the globally
optimized ones

This story may repeat for dynamic embeddings

These handle time in various ways. Early variants (Jordan 1986)
don’t scale well
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Recursive Neural Networks
The classic RNN definition (Elman 1990) has a time-dependent
state vector ht , and upon receiving input xt moves to ht+1 given
by an affine transform and a tanh nonlinearity:
ht+1 = tanhWxt + Uht + b where the matrices W ,U and the
bias vector b are the trainable parameters of the model, (Jordan
1986 used the output from previous stage in update)
Classic result (Siegelmann and Sontag 1992): RNNs can
simulate any TM in real time using only rational weights, we can
even build a universal TM from ∼ 1000 very simple processors
But this requires arbitrary precision arithmetic, and problem
instance is read into machine ahead of time (and may require
superexponential number of processing steps afterwards).
Practical interest is with finite precision and real-time operation
Variant of Elman model uses ReLU: max(0,x) instead of tanh –
computationally more powerful, but hard to train ‘exploding
gradients’
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GRU (gated recurrent unit)

zt = σg (Wzxt + Uzht−1 + bz) (1)

rt = σg (Wrxt + Urht−1 + br ) (2)

ĥt = φh(Whxt + Uh(rt � ht−1) + bh) (3)

ht = (1− zt)� ht−1 + zt � ĥt (4)
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LSTM (long short-term memory)

ft = σg (Wf xt + Uf ht−1 + bf ) (5)

it = σg (Wixt + Uiht−1 + bi) (6)

ot = σg (Woxt + Uoht−1 + bo) (7)

c̃t = σc(Wcxt + Ucht−1 + bc) (8)

ct = ft ◦ ct−1 + it ◦ c̃t (9)

ht = ot ◦ σh(ct) (10)

Historically LSTM (Hochreiter and Schmidhuber 1996) preceded
GRU (Cho et al 2014) who wanted to simplify LSTMs
LSTMs have more power (do better on long dependencies)
Computational power of architectures investigated by Weiss et al
(2018)
Key idea: keep a very contentful state vector
Possible line of attack: information bottleneck method (Tishby
et al 1999)
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LSTM v GRU
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Seq2seq

Using LSTMs as elementary building blocks (Sutskever et al
2014)

Stacked 5 deep, state vectors 8000 dim

Does MT (English-French) quite well

Relies on reversing input

Encoder-decoder architecture (can be retrojected on LSTM)
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Attention
Bahdanau et al 2015, Luong at al 2015

Self-attention Lin 2017 Vaswani et al 2017
Also developed for MT (which remains the canonical case)
Introduces ‘multi-head’ model: several attention layers running
in parallel
Positional encoding: mixing sinusoids of different frequencies
with the input
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Seq2seq + Attention = Transformers

The first dynamic word vector system was CoVe (McCann 2017)

This was an encoder-decoder model trained on various MT
datasets (but no effort to mix them in a single model)

Trained on MT data (7m sentence pairs)

Encoder output concatenated to a static (GloVe) embedding

CoVe had sophisticated bidirectional attention, but not as good
as Transformers
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ELMO

Encoder-decoder trained on LM task (monolingual – much more
data)

Multi-head (transformer-style) attention

Concatenates all (not just the top) LSTM states

For specific tasks, it may make sense to re-train the LM itself

ELMO training used 1G words of English text, GPT-2 on about
8G words, GPT-3 on over 100G words (45 TB compressed from
CommonCrawl, plus curated datasets)

GPT-3 175G parameters trained in 3.14·1023 flops (a third
yottaflop)

Energy usage alone 500MWh
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BERT

Introduced in Devlin et al (2019)

Similar to ELMO, but trained on much less data than GPT:
800m words from the Google Books Corpus and 2.5G words
from WP

Fully bidirectional, with 15% of tokens masked out

m-BERT (multilingual, 104 languages), RoBertA, etc etc

National BERT’s: CememBERT (Martin et al 2019), HuBERT
(Nemeskey 2020), ...

Generalizations, BERTology
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