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NEIGHBORHOODS

@ Binary classification revisited

False positive True positive

False negative

True negative

PAC learning
kNN classification
Tangent distance

Back to word vectors



VORONOI DIAGRAM

Manhattan Euclidean Chebyshev
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PAC LEARNING

CONCEPT

A concept c defined as a subset of 2"(RR") endowed with a probability
distribution 7. over ¢

@ We only have positive evidence: we can always request new
examples of ¢, which will be drawn according to 7.

@ We demand that the learned function f have no false positives,
and only has ¢ error

o Further, we demand that the learning process lead to such an f
with probability 1 — 4, and that it be polynomial in 1/¢,1/6

e Finally, we are not interested in a single concept ¢, but a class of
concepts C

@ We say that such a class is C Probably Approximately Correctly
(PAC) learnable, if there is a learning process that leads to an f.
for each ¢ € C in polynomial time

@ We owe this idea to Les Valiant, check out valiant_1984.pdf
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PAC LEARNING (2)

@ It is the polynomial restriction that makes it hard. Otherwise, we
just request new samples and define f as the disjunction of the
vectors (discrete case) received so far, and sooner or later we hit
coverage 1 — ¢

o Let p; be Boolean variables (1 </ < t), and assume the concept
to be learned is p; in the space of monomials such as p»paps

e We can provide 2t~ examples which all have py, ... , Pt/2 set to
one, and we still haven't learned the diference between 2t*
candidate monomials

@ Theorem: C is PAC-learneable iff it has finite VC-dimension

@ Vapnik-Chervonenkis dimension: size of maximum set C can
shatter

o C shatters mif {mnc|ce C} =27

@ HW: let C be the corners of the n-cube. What is the
VC-dimension? How many samples are needed?
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k NEAREST NEIGHBOR

@ INN domains are voronoi polytopes
@ Next step is 3NN — don't know how to break ties

@ Has regression version (predicted value is average of k nearest
values), here k even is also sensible

@ Dimension reduction helps, especially if the original space was
large
e Lots of flavors, e.g. weighing points by distance

@ HW: Project PB data down to 2 dim by PCA, look at , and
generate pictures like Figs 1-3 there
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https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm

TANGENT DISTANCE

@ Often, we don't have enough reasonable training data

° ::tzllia::sti?iad Prototype A Prototype B
e Euclidean distance goes wrong! One possible approach is data
enrichment

@ For example we may add small rotations:

[
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TANGENT DISTANCE (2)

@ Or, we may as well perform the operation at test time

e Find the degree o that produces the minimum Euclidean

distance to target

@ Can be done with several transformations besides rotation

@ |dea comes from Simard et al simard_1998.pdf
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SLIDE FROM SRIHARI

Minimizing value a for Tangent Distance

Stored prototype
" x’ falls on this

In Euchd.ean1 manifold when
spac’e 1)1(1 is closer subjected to
to x’ than x, transformations
In Tangent space
X, is closer to x’
than x;

Pink paraboloid is a

quadratic function of the

parameter vector a

Gradient descent is used
Tangent Space at x’ is aff r-dimensional Euclidean space spanned by to calculate
Tangent vectors TV, and TV, Tangent distance D, (x’, Xx2)
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