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Homeworks

Lot of good stuff, some of it exemplary!

17 people submitted, pretty skewed distribution: 2 people got 5
points; 2 people got 8; 2 got 9; 2 got 9.5; 9 people got 10

Lots of people did more than was strictly required to get 10

Some people used Bartlett’s test, great!

Please start looking at other people’s work

Leaderboard lists some typical errors
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Markov modeling refresher

Not a single model, but a rich family

Relevant everywhere where we see Markovian dependency

Data stream d1, d2, . . . is first order Markovian if
p(dt |d1, . . . , dt−1) = p(dt |dt−1)

k-th order if it depends on previous k , not just previous 1

Original example (Markov): probability of a letter in (natural
language) text depends on probability of previous few letters
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Hidden MMs
Assume a set of hidden (unobservable) states s1, . . . , sl
These are linked by probailistic transitions given by a matrix T
whose ij element gives the probability of moving from state i to
state j

Each state has its own emission function Ei that describes the
probability of observing data d if the model is in state i

Emitted signal can be discrete (from a finite set) or continuous
(vectors in Euclidean space)

Given a model with fixed transition and emission parameters,
compute the probability that the model will emit d1, d2, . . . dt .
We sum over all the paths of length t. For one path si1 , . . . sit we
have the transition probabilities

∏t−1
i=1 Ti ,i+1 multiplied with the

emission probabilities
∏t

k=1 Eik (dk)

This is l t paths, very expensive, but there is a clever data
structure, the trellis, that makes this linear in t
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The trellis for an IBM model
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Viterbi, EM

Given an observation sequence d1, d2, . . . dt , find the most likely
sequence of hidden states si1 , . . . sit that could have generated
the sequence. This is the recognition problem, solved by the
Viterbi algorithm

Given lots of observation sequences, find the model parameters
most likely to generate them as Viterbi solutions. This is the
training problem

Solved by the expectation maximzation algorithm (Wikpedia has
great visualization)

These algorithms (and other key ones) are available for student
presentation

“Academic” project: give 20-25 minutes presentation on some of
these algorithms
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Other material for academic projects

Maximum entropy methods, decision trees

Genetic/evolutionary methods, boosting

Nearest neighbor, tangent distance methods

Algorithmic information theory, Kolmogorov complexity,
minimum description length.

Neural nets (NN), backpropagation.
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Feature engineering

The key idea
Replace measurements m1, . . .mk by a set of features fi , . . . , fr
computed from the measurements

Particularly salient in speech recognition (heavily used in NN
approaches to ASR as well)

Slowly (but not entirely) disappearing from NLP

Gone from vision

Simplest (linear) version: PCA k > r

A clever nonlinear vesion: kernel trick k < r

Nonlinear but k > r : signal preprocessing. Requires solid domain
knowledge

In ASR, k >> r : input k is 44.1k stereo 16 bit PCM = 1.411
megabit/sec, output 2 kilobit/sec
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What is happening in NLP?
There is an ongoing “Intro to Python and NLP” course:
https://python-nlp.github.io It’s more practical than this one,
and takes you further in NLP
If you assume 128k words, at worst you’d need 17 bits to encode
a word (in practive 12-15 bits suffice since word frequencies are
not uniform. This assumption is compatible with the idea that
there are infinitely many words.)
Word vectors give you 300 dimensional real encodings (higher
dimensions and higher precision are often used these days) for
9.6 kilobits/word
But the word vectors are nice: similar words will have similar
vectors (we measure this by cosine similarity more than
Euclidean distance, because vector length are proportional to log
word frequency)
What does it mean for words to be similar? That they appear in
the same or similar contexts (similar sentences, docs, . . . )
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Word vector precursors

Discrete (partial) decomposition of meanings into finite bit
vectors is old hat, for example brother = ‘+sibling +male’
sister = ‘+sibling –male’

Continuous begins with Osgood et al. (1975) who asked for
judgements on a scale of -3 to +3 and performed PCA on the
results

Next big thing was Landauer, Dumais, etc. who took
term-document cooccurrence data

Create ‘term-document matrix’ T where Tij counts the number
of times term i appears in document j

Landauer, Dumais etc. applied SVD, reduced T to a few
hundred principal components, called it “Latent semantic
indexing” and patented it (thereby slowing down developments
by 15 years or so – Microsoft didn’t get rich on the patents)
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Success has many fathers

Idea first suggested by Schütze (1990)

First implementation that really worked Bengio and Ducharme
(2001)

NLP “almost from scratch” POS, CHUNK, NER, role labeling
Collobert (2011)

Has linear structure (king–queen=man–woman) Mikolov (2013)

Why? Pennington et al (2014), Arora (2015), Gittens (2017)

Kornai Advanced Machine Learning, Lecture 5 BME 2020 Oct 8 13 / 15



Word embeddings

Let us define “context as “within a window of ±n words
(typically, n = 5). We define PMI(x,y)=log p(x ,y)

p(x)p(y)

Actually we tend to ignore negative evidence, and use PPMI =
max(0, PMI)

The big thing is that supervised data is obtained cheaply
(teraword scale)

T is now term-term cooccurrence (PPMI) matrix, and we again
do SVD for dimension reduction. This way we assign a relatively
short vector ~word ∈ Rd to each word. This assignment is called
the (static) embedding

Dynamic embeddings (ELMO, BERT) don’t have this kind of
clean math yet

In fact, the static was not fully understood until Levy and
Goldberg 2014a It worked first, made sense later
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Project (midterm) discussion

1 Download your data (not on GitHub, just some local disk)

2 Unless it comes with predefined train/dev/test cut, create one
(add filelist to github project repo, not the files themselves)

3 Extend your writeup with a reproducible description of
train/dev/test data, your motivation/goals, and SOTA (if there
is any – if there is none, say so)

4 By week 7, you will need a baseline system

5 To give you time for these tasks, there is no homework

6 Exception: People who have 10 points or less in columns K+P
need to improve their scores
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