
Szóreprezentációk folytonos vektortérben

2014. szeptember 26.

Outline

Bengio et al 2013: A Neural Probabilistic Language Model

Mikolov et al 2014: Efficient Estimation of Word Representation in
Vector Space

Pennington et al 2014: GloVe: Global Vectors for Word
Representation

A dimenziók átka

I A hagyományos nyelvmodellek (pl. n-gram alapúak)

I általában 1-2 szónyi környezet

I nem veszik figyelembe a hasonlóságot

“The cat is walking in the bedroom”
“A dog was running in a room”

Elosztott reprezentációBENGIO, DUCHARME, VINCENT AND JAUVIN

softmax

tanh

.

.

.

across words

most computation here

index for index for index for

shared parameters

Matrix

in
look−up
Table

. . .

C

C

wt�1wt�2

C(wt�2) C(wt�1)C(wt�n+1)

wt�n+1

i-th output = P(wt = i | context)

Figure 1: Neural architecture: f (i,wt�1, · · · ,wt�n+1) = g(i,C(wt�1), · · · ,C(wt�n+1)) where g is the
neural network andC(i) is the i-th word feature vector.

parameters of the mapping C are simply the feature vectors themselves, represented by a |V | ⇥m
matrixC whose row i is the feature vectorC(i) for word i. The function g may be implemented by a
feed-forward or recurrent neural network or another parametrized function, with parameters ω. The
overall parameter set is θ= (C,ω).

Training is achieved by looking for θ that maximizes the training corpus penalized log-likelihood:

L=
1
T ∑t

log f (wt ,wt�1, · · · ,wt�n+1;θ)+R(θ),

where R(θ) is a regularization term. For example, in our experiments, R is a weight decay penalty
applied only to the weights of the neural network and to theC matrix, not to the biases.3

In the above model, the number of free parameters only scales linearly with V , the number of
words in the vocabulary. It also only scales linearly with the order n : the scaling factor could
be reduced to sub-linear if more sharing structure were introduced, e.g. using a time-delay neural
network or a recurrent neural network (or a combination of both).

In most experiments below, the neural network has one hidden layer beyond the word features
mapping, and optionally, direct connections from the word features to the output. Therefore there
are really two hidden layers: the shared word features layer C, which has no non-linearity (it would
not add anything useful), and the ordinary hyperbolic tangent hidden layer. More precisely, the
neural network computes the following function, with a softmax output layer, which guarantees
positive probabilities summing to 1:

P̂(wt |wt�1, · · ·wt�n+1) =
eywt
∑i eyi

.

3. The biases are the additive parameters of the neural network, such as b and d in equation 1 below.

1142

I Maximalizálni

L =
1

T

∑
t

log f (wt ,wt−1, . . . ,wt−n+1; θ) + R(θ)

I Input
x = (C (wt−1),C (wt−2), . . . ,C (wt−n+1))

I dim(C) = |V | ×m

I Output
y = b + Wx + U tanh(d + Hx)

I dim(b) = |V |, dim(W) = |V | × (n − 1)m, dim(U) =
|V | × h, dim(d) = h, dim(H) = h × (n − 1)m

I Normalizálás (softmax)

f (wt ,wt−1, . . . ,wt−n+1) =
eywt∑
i e

y
i

I Paraméterek száma

|V |(1 + nm + h) + h(1 + (n − 1)m)

Eredmények

A NEURAL PROBABILISTIC LANGUAGE MODEL

n c h m direct mix train. valid. test.
MLP1 5 50 60 yes no 182 284 268
MLP2 5 50 60 yes yes 275 257
MLP3 5 0 60 yes no 201 327 310
MLP4 5 0 60 yes yes 286 272
MLP5 5 50 30 yes no 209 296 279
MLP6 5 50 30 yes yes 273 259
MLP7 3 50 30 yes no 210 309 293
MLP8 3 50 30 yes yes 284 270
MLP9 5 100 30 no no 175 280 276
MLP10 5 100 30 no yes 265 252
Del. Int. 3 31 352 336
Kneser-Ney back-off 3 334 323
Kneser-Ney back-off 4 332 321
Kneser-Ney back-off 5 332 321
class-based back-off 3 150 348 334
class-based back-off 3 200 354 340
class-based back-off 3 500 326 312
class-based back-off 3 1000 335 319
class-based back-off 3 2000 343 326
class-based back-off 4 500 327 312
class-based back-off 5 500 327 312

Table 1: Comparative results on the Brown corpus. The deleted interpolation trigram has a test per-
plexity that is 33% above that of the neural network with the lowest validation perplexity.
The difference is 24% in the case of the best n-gram (a class-based model with 500 word
classes). n : order of the model. c : number of word classes in class-based n-grams. h :
number of hidden units. m : number of word features for MLPs, number of classes for
class-based n-grams. direct: whether there are direct connections from word features to
outputs. mix: whether the output probabilities of the neural network are mixed with the
output of the trigram (with a weight of 0.5 on each). The last three columns give perplexity
on the training, validation and test sets.

probabilities. On the other hand, without those connections the hidden units form a tight bottleneck
which might force better generalization.

Table 2 gives similar results on the larger corpus (AP News), albeit with a smaller difference
in perplexity (8%). Only 5 epochs were performed (in approximately three weeks with 40 CPUs).
The class-based model did not appear to help the n-gram models in this case, but the high-order
modified Kneser-Ney back-off model gave the best results among the n-gram models.

5. Extensions and Future Work

In this section, we describe extensions to the model described above, and directions for future work.

1149

Outline

Bengio et al 2013: A Neural Probabilistic Language Model

Mikolov et al 2014: Efficient Estimation of Word Representation in
Vector Space

Pennington et al 2014: GloVe: Global Vectors for Word
Representation

I Cél: jó minőségű szóvektorok tanulása

I multiple degrees of similarity - szintakitikai és szemantikai

v(”King”)− v(”Man”) + v(”Woman”) ∼ v(”Queen”)

Időköltségek

I Feedforward Neural Net Language Model (NNLM)

Q = n ×m + n ×m × h + h × |V |
bináris fa hierarchiába rendezve a szótárat log2(|V |)

I Recurrent NNLM

Q = h × h + h × |V |
Nincs projekciós réteg, m = h

Egyszerűbb modellek szóvektortanulásra

I Continuous Bag-of-Words
Szóvektorok átlagát veszi a környezetből, nincs rejtett réteg.

Q = n ×m + m × log2(|V |)
I Continuous Skip-gram

1 szó az input, megjósolja a környező szavakat.

Q = C × (m + m × log2(|V |)

w(t-2)

w(t+1)

w(t-1)

w(t+2)

w(t)

SUM

 INPUT PROJECTION OUTPUT

w(t)

 INPUT PROJECTION OUTPUT

w(t-2)

w(t-1)

w(t+1)

w(t+2)

 CBOW Skip-gram

Figure 1: New model architectures. The CBOW architecture predicts the current word based on the
context, and the Skip-gram predicts surrounding words given the current word.

R words from the future of the current word as correct labels. This will require us to do R ⇥ 2
word classifications, with the current word as input, and each of the R + R words as output. In the
following experiments, we use C = 10.

4 Results

To compare the quality of different versions of word vectors, previous papers typically use a table
showing example words and their most similar words, and understand them intuitively. Although
it is easy to show that word France is similar to Italy and perhaps some other countries, it is much
more challenging when subjecting those vectors in a more complex similarity task, as follows. We
follow previous observation that there can be many different types of similarities between words, for
example, word big is similar to bigger in the same sense that small is similar to smaller. Example
of another type of relationship can be word pairs big - biggest and small - smallest [20]. We further
denote two pairs of words with the same relationship as a question, as we can ask: ”What is the
word that is similar to small in the same sense as biggest is similar to big?”

Somewhat surprisingly, these questions can be answered by performing simple algebraic operations
with the vector representation of words. To find a word that is similar to small in the same sense as
biggest is similar to big, we can simply compute vector X = vector(”biggest”)�vector(”big”)+
vector(”small”). Then, we search in the vector space for the word closest to X measured by cosine
distance, and use it as the answer to the question (we discard the input question words during this
search). When the word vectors are well trained, it is possible to find the correct answer (word
smallest) using this method.

Finally, we found that when we train high dimensional word vectors on a large amount of data, the
resulting vectors can be used to answer very subtle semantic relationships between words, such as
a city and the country it belongs to, e.g. France is to Paris as Germany is to Berlin. Word vectors
with such semantic relationships could be used to improve many existing NLP applications, such
as machine translation, information retrieval and question answering systems, and may enable other
future applications yet to be invented.

5

Table 1: Examples of five types of semantic and nine types of syntactic questions in the Semantic-
Syntactic Word Relationship test set.

Type of relationship Word Pair 1 Word Pair 2
Common capital city Athens Greece Oslo Norway
All capital cities Astana Kazakhstan Harare Zimbabwe
Currency Angola kwanza Iran rial
City-in-state Chicago Illinois Stockton California
Man-Woman brother sister grandson granddaughter
Adjective to adverb apparent apparently rapid rapidly
Opposite possibly impossibly ethical unethical
Comparative great greater tough tougher
Superlative easy easiest lucky luckiest
Present Participle think thinking read reading
Nationality adjective Switzerland Swiss Cambodia Cambodian
Past tense walking walked swimming swam
Plural nouns mouse mice dollar dollars
Plural verbs work works speak speaks

4.1 Task Description

To measure quality of the word vectors, we define a comprehensive test set that contains five types
of semantic questions, and nine types of syntactic questions. Two examples from each category are
shown in Table 1. Overall, there are 8869 semantic and 10675 syntactic questions. The questions
in each category were created in two steps: first, a list of similar word pairs was created manually.
Then, a large list of questions is formed by connecting two word pairs. For example, we made a
list of 68 large American cities and the states they belong to, and formed about 2.5K questions by
picking two word pairs at random. We have included in our test set only single token words, thus
multi-word entities are not present (such as New York).

We evaluate the overall accuracy for all question types, and for each question type separately (se-
mantic, syntactic). Question is assumed to be correctly answered only if the closest word to the
vector computed using the above method is exactly the same as the correct word in the question;
synonyms are thus counted as mistakes. This also means that reaching 100% accuracy is likely
to be impossible, as the current models do not have any input information about word morphology.
However, we believe that usefulness of the word vectors for certain applications should be positively
correlated with this accuracy metric. Further progress can be achieved by incorporating information
about structure of words, especially for the syntactic questions.

4.2 Maximization of Accuracy

We have used a Google News corpus for training the word vectors. This corpus contains about
6B tokens. We have restricted the vocabulary size to 1 million most frequent words. Clearly, we
are facing time constrained optimization problem, as it can be expected that both using more data
and higher dimensional word vectors will improve the accuracy. To estimate the best choice of
model architecture for obtaining as good as possible results quickly, we have first evaluated models
trained on subsets of the training data, with vocabulary restricted to the most frequent 30k words.
The results using the CBOW architecture with different choice of word vector dimensionality and
increasing amount of the training data are shown in Table 2.

It can be seen that after some point, adding more dimensions or adding more training data provides
diminishing improvements. So, we have to increase both vector dimensionality and the amount
of the training data together. While this observation might seem trivial, it must be noted that it is
currently popular to train word vectors on relatively large amounts of data, but with insufficient size

6

Table 2: Accuracy on subset of the Semantic-Syntactic Word Relationship test set, using word
vectors from the CBOW architecture with limited vocabulary. Only questions containing words from
the most frequent 30k words are used.

Dimensionality / Training words 24M 49M 98M 196M 391M 783M
50 13.4 15.7 18.6 19.1 22.5 23.2
100 19.4 23.1 27.8 28.7 33.4 32.2
300 23.2 29.2 35.3 38.6 43.7 45.9
600 24.0 30.1 36.5 40.8 46.6 50.4

Table 3: Comparison of architectures using models trained on the same data, with 640-dimensional
word vectors. The accuracies are reported on our Semantic-Syntactic Word Relationship test set,
and on the syntactic relationship test set of [20]

Model Semantic-Syntactic Word Relationship test set MSR Word Relatedness
Architecture Semantic Accuracy [%] Syntactic Accuracy [%] Test Set [20]

RNNLM 9 36 35
NNLM 23 53 47
CBOW 24 64 61

Skip-gram 55 59 56

(such as 50 - 100). Given Equation 4, increasing amount of training data twice results in about the
same increase of computational complexity as increasing vector size twice.

For the experiments reported in Tables 2 and 4, we used three training epochs with stochastic gradi-
ent descent and backpropagation. We chose starting learning rate 0.025 and decreased it linearly, so
that it approaches zero at the end of the last training epoch.

4.3 Comparison of Model Architectures

First we compare different model architectures for deriving the word vectors using the same training
data and using the same dimensionality of 640 of the word vectors. In the further experiments, we
use full set of questions in the new Semantic-Syntactic Word Relationship test set, i.e. unrestricted to
the 30k vocabulary. We also include results on a test set introduced in [20] that focuses on syntactic
similarity between words3.

The training data consists of several LDC corpora and is described in detail in [18] (320M words,
82K vocabulary). We used these data to provide a comparison to a previously trained recurrent
neural network language model that took about 8 weeks to train on a single CPU. We trained a feed-
forward NNLM with the same number of 640 hidden units using the DistBelief parallel training [6],
using a history of 8 previous words (thus, the NNLM has more parameters than the RNNLM, as the
projection layer has size 640 ⇥ 8).

In Table 3, it can be seen that the word vectors from the RNN (as used in [20]) perform well mostly
on the syntactic questions. The NNLM vectors perform significantly better than the RNN - this is
not surprising, as the word vectors in the RNNLM are directly connected to a non-linear hidden
layer. The CBOW architecture works better than the NNLM on the syntactic tasks, and about the
same on the semantic one. Finally, the Skip-gram architecture works slightly worse on the syntactic
task than the CBOW model (but still better than the NNLM), and much better on the semantic part
of the test than all the other models.

Next, we evaluated our models trained using one CPU only and compared the results against publicly
available word vectors. The comparison is given in Table 4. The CBOW model was trained on subset

3We thank Geoff Zweig for providing us the test set.

7

Table 4: Comparison of publicly available word vectors on the Semantic-Syntactic Word Relation-
ship test set, and word vectors from our models. Full vocabularies are used.

Model Vector Training Accuracy [%]
Dimensionality words

Semantic Syntactic Total
Collobert-Weston NNLM 50 660M 9.3 12.3 11.0
Turian NNLM 50 37M 1.4 2.6 2.1
Turian NNLM 200 37M 1.4 2.2 1.8
Mnih NNLM 50 37M 1.8 9.1 5.8
Mnih NNLM 100 37M 3.3 13.2 8.8
Mikolov RNNLM 80 320M 4.9 18.4 12.7
Mikolov RNNLM 640 320M 8.6 36.5 24.6
Huang NNLM 50 990M 13.3 11.6 12.3
Our NNLM 20 6B 12.9 26.4 20.3
Our NNLM 50 6B 27.9 55.8 43.2
Our NNLM 100 6B 34.2 64.5 50.8
CBOW 300 783M 15.5 53.1 36.1
Skip-gram 300 783M 50.0 55.9 53.3

Table 5: Comparison of models trained for three epochs on the same data and models trained for
one epoch. Accuracy is reported on the full Semantic-Syntactic data set.

Model Vector Training Accuracy [%] Training time
Dimensionality words [days]

Semantic Syntactic Total
3 epoch CBOW 300 783M 15.5 53.1 36.1 1
3 epoch Skip-gram 300 783M 50.0 55.9 53.3 3
1 epoch CBOW 300 783M 13.8 49.9 33.6 0.3
1 epoch CBOW 300 1.6B 16.1 52.6 36.1 0.6
1 epoch CBOW 600 783M 15.4 53.3 36.2 0.7
1 epoch Skip-gram 300 783M 45.6 52.2 49.2 1
1 epoch Skip-gram 300 1.6B 52.2 55.1 53.8 2
1 epoch Skip-gram 600 783M 56.7 54.5 55.5 2.5

of the Google News data in about a day, while training time for the Skip-gram model was about three
days.

For experiments reported further, we used just one training epoch (again, we decrease the learning
rate linearly so that it approaches zero at the end of training). Training a model on twice as much
data using one epoch gives comparable or better results than iterating over the same data for three
epochs, as is shown in Table 5, and provides additional small speedup.

4.4 Large Scale Parallel Training of Models

As mentioned earlier, we have implemented various models in a distributed framework called Dis-
tBelief. Below we report the results of several models trained on the Google News 6B data set,
with mini-batch asynchronous gradient descent and the adaptive learning rate procedure called Ada-
grad [7]. We used 50 to 100 model replicas during the training. The number of CPU cores is an

8

Table 4: Comparison of publicly available word vectors on the Semantic-Syntactic Word Relation-
ship test set, and word vectors from our models. Full vocabularies are used.

Model Vector Training Accuracy [%]
Dimensionality words

Semantic Syntactic Total
Collobert-Weston NNLM 50 660M 9.3 12.3 11.0
Turian NNLM 50 37M 1.4 2.6 2.1
Turian NNLM 200 37M 1.4 2.2 1.8
Mnih NNLM 50 37M 1.8 9.1 5.8
Mnih NNLM 100 37M 3.3 13.2 8.8
Mikolov RNNLM 80 320M 4.9 18.4 12.7
Mikolov RNNLM 640 320M 8.6 36.5 24.6
Huang NNLM 50 990M 13.3 11.6 12.3
Our NNLM 20 6B 12.9 26.4 20.3
Our NNLM 50 6B 27.9 55.8 43.2
Our NNLM 100 6B 34.2 64.5 50.8
CBOW 300 783M 15.5 53.1 36.1
Skip-gram 300 783M 50.0 55.9 53.3

Table 5: Comparison of models trained for three epochs on the same data and models trained for
one epoch. Accuracy is reported on the full Semantic-Syntactic data set.

Model Vector Training Accuracy [%] Training time
Dimensionality words [days]

Semantic Syntactic Total
3 epoch CBOW 300 783M 15.5 53.1 36.1 1
3 epoch Skip-gram 300 783M 50.0 55.9 53.3 3
1 epoch CBOW 300 783M 13.8 49.9 33.6 0.3
1 epoch CBOW 300 1.6B 16.1 52.6 36.1 0.6
1 epoch CBOW 600 783M 15.4 53.3 36.2 0.7
1 epoch Skip-gram 300 783M 45.6 52.2 49.2 1
1 epoch Skip-gram 300 1.6B 52.2 55.1 53.8 2
1 epoch Skip-gram 600 783M 56.7 54.5 55.5 2.5

of the Google News data in about a day, while training time for the Skip-gram model was about three
days.

For experiments reported further, we used just one training epoch (again, we decrease the learning
rate linearly so that it approaches zero at the end of training). Training a model on twice as much
data using one epoch gives comparable or better results than iterating over the same data for three
epochs, as is shown in Table 5, and provides additional small speedup.

4.4 Large Scale Parallel Training of Models

As mentioned earlier, we have implemented various models in a distributed framework called Dis-
tBelief. Below we report the results of several models trained on the Google News 6B data set,
with mini-batch asynchronous gradient descent and the adaptive learning rate procedure called Ada-
grad [7]. We used 50 to 100 model replicas during the training. The number of CPU cores is an

8

Table 8: Examples of the word pair relationships, using the best word vectors from Table 4 (Skip-
gram model trained on 783M words with 300 dimensionality).

Relationship Example 1 Example 2 Example 3
France - Paris Italy: Rome Japan: Tokyo Florida: Tallahassee
big - bigger small: larger cold: colder quick: quicker

Miami - Florida Baltimore: Maryland Dallas: Texas Kona: Hawaii
Einstein - scientist Messi: midfielder Mozart: violinist Picasso: painter
Sarkozy - France Berlusconi: Italy Merkel: Germany Koizumi: Japan

copper - Cu zinc: Zn gold: Au uranium: plutonium
Berlusconi - Silvio Sarkozy: Nicolas Putin: Medvedev Obama: Barack

Microsoft - Windows Google: Android IBM: Linux Apple: iPhone
Microsoft - Ballmer Google: Yahoo IBM: McNealy Apple: Jobs

Japan - sushi Germany: bratwurst France: tapas USA: pizza

assumes exact match, the results in Table 8 would score only about 60%). We believe that word
vectors trained on even larger data sets with larger dimensionality will perform significantly better,
and will enable the development of new innovative applications. Another way to improve accuracy is
to provide more than one example of the relationship. By using ten examples instead of one to form
the relationship vector (we average the individual vectors together), we have observed improvement
of accuracy of our best models by about 10% absolutely on the semantic-syntactic test.

It is also possible to apply the vector operations to solve different tasks. For example, we have
observed good accuracy for selecting out-of-the-list words, by computing average vector for a list of
words, and finding the most distant word vector. This is a popular type of problems in certain human
intelligence tests. Clearly, there is still a lot of discoveries to be made using these techniques.

6 Conclusion

In this paper we studied the quality of vector representations of words derived by various models on
a collection of syntactic and semantic language tasks. We observed that it is possible to train high
quality word vectors using very simple model architectures, compared to the popular neural network
models (both feedforward and recurrent). Because of the much lower computational complexity, it
is possible to compute very accurate high dimensional word vectors from a much larger data set.
Using the DistBelief distributed framework, it should be possible to train the CBOW and Skip-gram
models even on corpora with one trillion words, for basically unlimited size of the vocabulary. That
is several orders of magnitude larger than the best previously published results for similar models.

An interesting task where the word vectors have recently been shown to significantly outperform the
previous state of the art is the SemEval-2012 Task 2 [11]. The publicly available RNN vectors were
used together with other techniques to achieve over 50% increase in Spearman’s rank correlation
over the previous best result [31]. The neural network based word vectors were previously applied
to many other NLP tasks, for example sentiment analysis [12] and paraphrase detection [28]. It can
be expected that these applications can benefit from the model architectures described in this paper.

Our ongoing work shows that the word vectors can be successfully applied to automatic extension
of facts in Knowledge Bases, and also for verification of correctness of existing facts. Results
from machine translation experiments also look very promising. In the future, it would be also
interesting to compare our techniques to Latent Relational Analysis [30] and others. We believe that
our comprehensive test set will help the research community to improve the existing techniques for
estimating the word vectors. We also expect that high quality word vectors will become an important
building block for future NLP applications.

10

Outline

Bengio et al 2013: A Neural Probabilistic Language Model

Mikolov et al 2014: Efficient Estimation of Word Representation in
Vector Space

Pennington et al 2014: GloVe: Global Vectors for Word
Representation

I a szóanalógiás feladat: King - Queen = Man - Woman

I vektorok esetén szépen elegánsan vektoriális kivonás

I erre a feladatra fókuszálva dolgozzák ki a glove modellt

megfigyelés 1: i , j , k szavak, P() valósźınűségek: P(k|i)
P(k|j) � 1, ha k

jelentése kapcsolatos az i , j szavakkal, de az i szóra jellemző, j-re
nem; és közel van 1-hez, ha inadekvát. Tehát a wi − wj

szóvektorok különbsége a valósźınűségük hányadosaival lehet
arányos a modellben.

Table 1: Co-occurrence probabilities for target words ice and steam with selected context words from a 6
billion token corpus. Only in the ratio does noise from non-discriminative words like water and fashion
cancel out, so that large values (much greater than 1) correlate well with properties specific to ice, and
small values (much less than 1) correlate well with properties specific of steam.

Probability and Ratio k = solid k = gas k = water k = fashion

P(k |ice) 1.9 ⇥ 10�4 6.6 ⇥ 10�5 3.0 ⇥ 10�3 1.7 ⇥ 10�5

P(k |steam) 2.2 ⇥ 10�5 7.8 ⇥ 10�4 2.2 ⇥ 10�3 1.8 ⇥ 10�5

P(k |ice)/P(k |steam) 8.9 8.5 ⇥ 10�2 1.36 0.96

context of word i.
We begin with a simple example that showcases

how certain aspects of meaning can be extracted
directly from co-occurrence probabilities. Con-
sider two words i and j that exhibit a particular as-
pect of interest; for concreteness, suppose we are
interested in the concept of thermodynamic phase,
for which we might take i = ice and j = steam.
The relationship of these words can be examined
by studying the ratio of their co-occurrence prob-
abilities with various probe words, k. For words
k related to ice but not steam, say k = solid, we
expect the ratio Pik/Pjk will be large. Similarly,
for words k related to steam but not ice, say k =
gas, the ratio should be small. For words k like
water or fashion, that are either related to both ice
and steam, or to neither, the ratio should be close
to one. Table 1 shows these probabilities and their
ratios for a large corpus, and the numbers confirm
these expectations. Compared to the raw probabil-
ities, the ratio is better able to distinguish relevant
words (solid and gas) from irrelevant words (water
and fashion) and it is also better able to discrimi-
nate between the two relevant words.

The above argument suggests that the appropri-
ate starting point for word vector learning should
be with ratios of co-occurrence probabilities rather
than the probabilities themselves. Noting that the
ratio Pik/Pjk depends on three words i, j, and k,
the most general model takes the form,

F (wi ,w j , w̃k) =
Pik

Pjk
, (1)

where w 2 Rd are word vectors and w̃ 2 Rd
are separate context word vectors whose role will
be discussed in Section 4.2. In this equation, the
right-hand side is extracted from the corpus, and
F may depend on some as-of-yet unspecified pa-
rameters. The number of possibilities for F is vast,
but by enforcing a few desiderata we can select a
unique choice. First, we would like F to encode

the information present the ratio Pik/Pjk in the
word vector space. Since vector spaces are inher-
ently linear structures, the most natural way to do
this is with vector differences. With this aim, we
can restrict our consideration to those functions F
that depend only on the difference of the two target
words, modifying Eqn. (1) to,

F (wi � w j , w̃k) =
Pik

Pjk
. (2)

Next, we note that the arguments of F in Eqn. (2)
are vectors while the right-hand side is a scalar.
While F could be taken to be a complicated func-
tion parameterized by, e.g., a neural network, do-
ing so would obfuscate the linear structure we are
trying to capture. To avoid this issue, we can first
take the dot product of the arguments,

F
⇣
(wi � w j)T w̃k

⌘
=

Pik

Pjk
, (3)

which prevents F from mixing the vector dimen-
sions in undesirable ways. Next, note that for
word-word co-occurrence matrices, the distinction
between a word and a context word is arbitrary and
that we are free to exchange the two roles. To do so
consistently, we must not only exchange w $ w̃

but also X $ XT . Our final model should be in-
variant under this relabeling, but Eqn. (3) is not.
However, the symmetry can be restored in two
steps. First, we require that F be a homomorphism
between the groups (R,+) and (R>0,⇥), i.e.,

F
⇣
(wi � w j)T w̃k

⌘
=

F (wT
i w̃k)

F (wT
j w̃k)

, (4)

which, by Eqn. (3), is solved by,

F (wT
i w̃k) = Pik =

Xik

Xi
. (5)

The solution to Eqn. (4) is F = exp, or,

wT
i w̃k = log(Pik) = log(Xik) � log(Xi) . (6)

megfigyelés 2: wi − wj különbség és a wk próbaszó (probe word)
vektorokra szimmetrikus is lehetne a modell (mert a
szó-kontextusszó viszony szimmetrikus)

megfigyelés 3: a valósźınűségek skalárok, a szóvektorok vektorok,
de a két vektor skaláris szorzatát kipróbálhatnánk

levezethető, hogy ilyen tulajdonságokkal rendelkezik ez az egyszerű
modell:

wi · wk + b = log(Xik)

a modell betańıtásához (a wi vektorok kiszáḿıtásához) a legkisebb
négyzetek megfelelő (a glove-ban még egy súlyfüggvénnyel
szorzunk, ami kiegyenĺıti a szógyakoriságbeli nagyságrendi
különbségeket)
a modell szerencsére a |V |2-nél sokkal jobban méretezhető, mert
az együttes előfordulások eloszlása nem egyenletes, hanem
hatványtörvény szerinti (ritka mátrix; polinomiálisan kevesebb
száḿıtás szükséges)

Eredmények

világverő :)

The total number of words in the corpus is pro-
portional to the sum over all elements of the co-
occurrence matrix X ,

|C | ⇠
X

i j

Xi j =

|X |X

r=1

k
r↵
= kH|X |,↵ , (18)

where we have rewritten the last sum in terms of
the generalized harmonic number Hn,m . The up-
per limit of the sum, |X |, is the maximum fre-
quency rank, which coincides with the number of
nonzero elements in the matrix X . This number is
also equal to the maximum value of r in Eqn. (17)
such that Xi j � 1, i.e., |X | = k1/↵ . Therefore we
can write Eqn. (18) as,

|C | ⇠ |X |↵ H|X |,↵ . (19)

We are interested in how |X | is related to |C | when
both numbers are large; therefore we are free to
expand the right hand side of the equation for large
|X |. For this purpose we use the expansion of gen-
eralized harmonic numbers (Apostol, 1976),

Hx,s =
x1�s

1 � s
+ ⇣ (s) + O(x�s) if s > 0, s , 1 ,

(20)
giving,

|C | ⇠ |X |
1 � ↵ + ⇣ (↵) |X |↵ + O(1) , (21)

where ⇣ (s) is the Riemann zeta function. In the
limit that X is large, only one of the two terms on
the right hand side of Eqn. (21) will be relevant,
and which term that is depends on whether ↵ > 1,

|X | =
(O(|C |) if ↵ < 1,
O(|C |1/↵) if ↵ > 1.

(22)

For the corpora studied in this article, we observe
that Xi j is well-modeled by Eqn. (17) with ↵ =
1.25. In this case we have that |X | = O(|C |0.8).
Therefore we conclude that the complexity of the
model is much better than the worst case O(V 2),
and in fact it does somewhat better than the on-line
window-based methods which scale like O(|C |).

4 Experiments

4.1 Evaluation methods
We conduct experiments on the word analogy
task of Mikolov et al. (2013a), a variety of word
similarity tasks, as described in (Luong et al.,
2013), and on the CoNLL-2003 shared benchmark

Table 2: Results on the word analogy task, given
as percent accuracy. Underlined scores are best
within groups of similarly-sized models; bold
scores are best overall. HPCA vectors are publicly
available2; (i)vLBL results are from (Mnih et al.,
2013); skip-gram (SG) and CBOW results are
from (Mikolov et al., 2013a,b); we trained SG†

and CBOW† using the word2vec tool3. See text
for details and a description of the SVD models.

Model Dim. Size Sem. Syn. Tot.
ivLBL 100 1.5B 55.9 50.1 53.2
HPCA 100 1.6B 4.2 16.4 10.8
GloVe 100 1.6B 67.5 54.3 60.3

SG 300 1B 61 61 61
CBOW 300 1.6B 16.1 52.6 36.1
vLBL 300 1.5B 54.2 64.8 60.0
ivLBL 300 1.5B 65.2 63.0 64.0
GloVe 300 1.6B 80.8 61.5 70.3
SVD 300 6B 6.3 8.1 7.3

SVD-S 300 6B 36.7 46.6 42.1
SVD-L 300 6B 56.6 63.0 60.1
CBOW† 300 6B 63.6 67.4 65.7

SG† 300 6B 73.0 66.0 69.1
GloVe 300 6B 77.4 67.0 71.7
CBOW 1000 6B 57.3 68.9 63.7

SG 1000 6B 66.1 65.1 65.6
SVD-L 300 42B 38.4 58.2 49.2
GloVe 300 42B 81.9 69.3 75.0

dataset for NER (Tjong Kim Sang and De Meul-
der, 2003).

Word analogies. The word analogy task con-
sists of questions like, “a is to b as c is to ?”
The dataset contains 19,544 such questions, di-
vided into a semantic subset and a syntactic sub-
set. The semantic questions are typically analogies
about people or places, like “Athens is to Greece
as Berlin is to ?”. The syntactic questions are
typically analogies about verb tenses or forms of
adjectives, for example “dance is to dancing as fly
is to ?”. To correctly answer the question, the
model should uniquely identify the missing term,
with only an exact correspondence counted as a
correct match. We answer the question “a is to b
as c is to ?” by finding the word d whose repre-
sentation wd is closest to wb � wa + wc according
to the cosine similarity.4

2http://lebret.ch/words/
3http://code.google.com/p/word2vec/
4Levy et al. (2014) introduce a multiplicative analogy

evaluation, 3COSMUL, and report an accuracy of 68.24% on

the sum W +W̃ as our word vectors. Doing so typ-
ically gives a small boost in performance, with the
biggest increase in the semantic analogy task.

We compare with the published results of a va-
riety of state-of-the-art models, as well as with
our own results produced using the word2vec
tool and with several baselines using SVDs. With
word2vec, we train the skip-gram (SG†) and
continuous bag-of-words (CBOW†) models on the
6 billion token corpus (Wikipedia 2014 + Giga-
word 5) with a vocabulary of the top 400,000 most
frequent words and a context window size of 10.
We used 10 negative samples, which we show in
Section 4.6 to be a good choice for this corpus.

For the SVD baselines, we generate a truncated
matrix Xtrunc which retains the information of how
frequently each word occurs with only the top
10,000 most frequent words. This step is typi-
cal of many matrix-factorization-based methods as
the extra columns can contribute a disproportion-
ate number of zero entries and the methods are
otherwise computationally expensive.

The singular vectors of this matrix constitute
the baseline “SVD”. We also evaluate two related
baselines: “SVD-S” in which we take the SVD ofp

Xtrunc, and “SVD-L” in which we take the SVD
of log(1+ Xtrunc). Both methods help compress the
otherwise large range of values in X .7

4.3 Results
We present results on the word analogy task in Ta-
ble 2. The GloVe model performs significantly
better than the other baselines, often with smaller
vector sizes and smaller corpora. Our results us-
ing the word2vec tool are somewhat better than
most of the previously published results. This is
due to a number of factors, including our choice to
use negative sampling (which typically works bet-
ter than the hierarchical softmax), the number of
negative samples, and the choice of the corpus.

We demonstrate that the model can easily be
trained on a large 42 billion token corpus, with a
substantial corresponding performance boost. We
note that increasing the corpus size does not guar-
antee improved results for other models, as can be
seen by the decreased performance of the SVD-

7We also investigated several other weighting schemes for
transforming X ; what we report here performed best. Many
weighting schemes like PPMI destroy the sparsity of X and
therefore cannot feasibly be used with large vocabularies.
With smaller vocabularies, these information-theoretic trans-
formations do indeed work well on word similarity measures,
but they perform very poorly on the word analogy task.

Table 3: Spearman rank correlation on word simi-
larity tasks. All vectors are 300-dimensional. The
CBOW⇤ vectors are from the word2vec website
and differ in that they contain phrase vectors.

Model Size WS353 MC RG SCWS RW
SVD 6B 35.3 35.1 42.5 38.3 25.6

SVD-S 6B 56.5 71.5 71.0 53.6 34.7
SVD-L 6B 65.7 72.7 75.1 56.5 37.0
CBOW† 6B 57.2 65.6 68.2 57.0 32.5

SG† 6B 62.8 65.2 69.7 58.1 37.2
GloVe 6B 65.8 72.7 77.8 53.9 38.1
SVD-L 42B 74.0 76.4 74.1 58.3 39.9
GloVe 42B 75.9 83.6 82.9 59.6 47.8

CBOW⇤ 100B 68.4 79.6 75.4 59.4 45.5

L model on this larger corpus. The fact that this
basic SVD model does not scale well to large cor-
pora lends further evidence to the necessity of the
type of weighting scheme proposed in our model.

Table 3 shows results on five different word
similarity datasets. A similarity score is obtained
from the word vectors by first normalizing each
feature across the vocabulary and then calculat-
ing the cosine similarity. We compute Spearman’s
rank correlation coefficient between this score and
the human judgments. CBOW⇤ denotes the vec-
tors available on the word2vec website that are
trained with word and phrase vectors on 100B
words of news data. GloVe outperforms it while
using a corpus less than half the size.

Table 4 shows results on the NER task with the
CRF-based model. The L-BFGS training termi-
nates when no improvement has been achieved on
the dev set for 25 iterations. Otherwise all config-
urations are identical to those used by Wang and
Manning (2013). The model labeled Discrete is
the baseline using a comprehensive set of discrete
features that comes with the standard distribution
of the Stanford NER model, but with no word vec-
tor features. In addition to the HPCA and SVD
models discussed previously, we also compare to
the models of Huang et al. (2012) (HSMN) and
Collobert and Weston (2008) (CW). We trained
the CBOW model using the word2vec tool8.
The GloVe model outperforms all other methods
on all evaluation metrics, except for the CoNLL
test set, on which the HPCA method does slightly
better. We conclude that the GloVe vectors are
useful in downstream NLP tasks, as was first

8We use the same parameters as above, except in this case
we found 5 negative samples to work slightly better than 10.

Table 4: F1 score on NER task with 50d vectors.
Discrete is the baseline without word vectors. We
use publicly-available vectors for HPCA, HSMN,
and CW. See text for details.

Model Dev Test ACE MUC7
Discrete 91.0 85.4 77.4 73.4

SVD 90.8 85.7 77.3 73.7
SVD-S 91.0 85.5 77.6 74.3
SVD-L 90.5 84.8 73.6 71.5
HPCA 92.6 88.7 81.7 80.7
HSMN 90.5 85.7 78.7 74.7

CW 92.2 87.4 81.7 80.2
CBOW 93.1 88.2 82.2 81.1
GloVe 93.2 88.3 82.9 82.2

shown for neural vectors in (Turian et al., 2010).

4.4 Model Analysis: Vector Length and
Context Size

In Fig. 2, we show the results of experiments that
vary vector length and context window. A context
window that extends to the left and right of a tar-
get word will be called symmetric, and one which
extends only to the left will be called asymmet-
ric. In (a), we observe diminishing returns for vec-
tors larger than about 200 dimensions. In (b) and
(c), we examine the effect of varying the window
size for symmetric and asymmetric context win-
dows. Performance is better on the syntactic sub-
task for small and asymmetric context windows,
which aligns with the intuition that syntactic infor-
mation is mostly drawn from the immediate con-
text and can depend strongly on word order. Se-
mantic information, on the other hand, is more fre-
quently non-local, and more of it is captured with
larger window sizes.

4.5 Model Analysis: Corpus Size
In Fig. 3, we show performance on the word anal-
ogy task for 300-dimensional vectors trained on
different corpora. On the syntactic subtask, there
is a monotonic increase in performance as the cor-
pus size increases. This is to be expected since
larger corpora typically produce better statistics.
Interestingly, the same trend is not true for the se-
mantic subtask, where the models trained on the
smaller Wikipedia corpora do better than those
trained on the larger Gigaword corpus. This is
likely due to the large number of city- and country-
based analogies in the analogy dataset and the fact
that Wikipedia has fairly comprehensive articles
for most such locations. Moreover, Wikipedia’s

50

55

60

65

70

75

80

85
OverallSyntacticSemantic

Wiki2010
1B tokens

Ac
cu

ra
cy

 [%
]

Wiki2014
1.6B tokens

Gigaword5
4.3B tokens

Gigaword5 +
Wiki2014
6B tokens

Common Crawl
42B tokens

Figure 3: Accuracy on the analogy task for 300-
dimensional vectors trained on different corpora.

entries are updated to assimilate new knowledge,
whereas Gigaword is a fixed news repository with
outdated and possibly incorrect information.

4.6 Model Analysis: Run-time

The total run-time is split between populating X
and training the model. The former depends on
many factors, including window size, vocabulary
size, and corpus size. Though we did not do so,
this step could easily be parallelized across mul-
tiple machines (see, e.g., Lebret and Collobert
(2014) for some benchmarks). Using a single
thread of a dual 2.1GHz Intel Xeon E5-2658 ma-
chine, populating X with a 10 word symmetric
context window, a 400,000 word vocabulary, and
a 6 billion token corpus takes about 85 minutes.
Given X , the time it takes to train the model de-
pends on the vector size and the number of itera-
tions. For 300-dimensional vectors with the above
settings (and using all 32 cores of the above ma-
chine), a single iteration takes 14 minutes. See
Fig. 4 for a plot of the learning curve.

4.7 Model Analysis: Comparison with
word2vec

A rigorous quantitative comparison of GloVe with
word2vec is complicated by the existence of
many parameters that have a strong effect on per-
formance. We control for the main sources of vari-
ation that we identified in Sections 4.4 and 4.5 by
setting the vector length, context window size, cor-
pus, and vocabulary size to the configuration men-
tioned in the previous subsection.

The most important remaining variable to con-
trol for is training time. For GloVe, the rele-
vant parameter is the number of training iterations.
For word2vec, the obvious choice would be the
number of training epochs. Unfortunately, the
code is currently designed for only a single epoch:

	Bengio et al 2013: A Neural Probabilistic Language Model
	Mikolov et al 2014: Efficient Estimation of Word Representation in Vector Space
	Pennington et al 2014: GloVe: Global Vectors for Word Representation

